
ECE 275B Homework # 1 Solutions – Winter 2018

1. (a) Because xi are assumed to be independent realizations of a continuous random
variable, it is almost surely (a.s.)1 the case that

x′1 < x′2 < · · · < x′n

Thus, the preimage of x′ contains the n! possible arrangements of the a.s. distinct values
of the (ordered) components of x′. As there is no reason to prefer any one arrangement
over another, the classical probability assumption of equally likely events2 yields

pθ(x |T (x) = x′) =
1

n!
χ
{
x ∈ T−1(x′)

}
a.s.

which is independent of the unknown parameter vector θ.3 Thus the vector of order
statistics x′ = T (x) is sufficient as a consequence of the classical (Fisherian) definition
of sufficiency.

(b) Because of the assumption of independence,

pθ(x) = pθ(x1) · · · pθ(xn) = pθ(x
′
1) · · · pθ(x′n) = g(θ, T (x)) .

Thus the vector of order statistics x′ = T (x) is sufficient as a consequence of the
Neyman–Fisher Factorization Theorem.

2. The solution closely follows the development done in lecture. Invoking the Axiom of
Choice, for each coset4 [x] of the equivalence class (partition) defined in the problem
statement we can choose a unique representative point ξ ∈ [x] to serve as an index for
the coset,

Aξ , [x] iff [x] = [ξ] .

We then define a statistic S(·) which takes its values in the set of index variables by

ξ = S(x) iff x ∈ Aξ = [ξ] .

Note this statistic induces the original partition,

x
S∼ x′ iff S(x) = S(x′) = ξ iff x, x′ ∈ Aξ = [ξ] x, x′ ∼ ξ .

1Recall that “almost surely” means “with probability equal to one.”
2Sometimes called the “Principle of Insufficient Reason” because there is no “reason” to consider any

one outcome as more probable than another.
3As usual, χ{A} denotes the characteristic (or indicator) function of the event A.
4By definition y ∈ [x] iff y ∼ x.
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Sufficiency of S. By definition of the equivalence class (partition) defined in the
problem statement, x ∼ ξ = S(x) implies that

pθ(x)

pθ(S(x))
= g(x, S(x))

or
pθ(x) = pθ(S(x)) · g(x, S(x)) , f(θ, S(x)) · h(x)

so that S (and hence the partition) is sufficient from the Neyman–Fisher Factorization
Theorem.

Necessity of S. Let T (x) be any sufficient statistic for pθ(x). Then T (x) = T (x′)
implies that5

pθ(x)

pθ(x′)
=

pθ(x, T (x))

pθ(x′, T (x′))
=

pθ(x|T (x)) pθ(T (x))

pθ(x′|T (x′)) pθ(T (x′))
=

pθ(x|T (x))

pθ(x′|T (x′))
=

p(x|T (x))

p(x′|T (x′))
, c(x, x′)

where c(x, x′) is independent of θ. By the definition of the equivalence class induced by
the statistic S defined above, this in turn implies that S(x) = S(x′). Thus the partition
induced by S is coarser than that induced by any sufficient statistic T , which is true
iff S is a function of any such T . Thus (by definition of necessity), S is a necessary
statistic for pθ(x).

3. If you had difficulty with this problem please come to my office hour.

4. On its domain of positive support a k–parameter exponential family distribution has
the form

ln pθ(y) = Q(θ)TT (y)− b(θ) + a(y) =
k∑
j=1

Qj(θ)Tj(y)− b(θ) + a(y) . (1)

If the natural statistics6 plus the constant function,

{1, T1(y), · · · , Tk(y)} ,

are linearly dependent, then at least one of the natural statistics (say, without loss of
generality, Tk(y)) can be written as an affine combination of the others,

Tk(y) = α0 + α1 T1(y) + · · ·+ αk−1 Tk−1(y) = α0 +
k−1∑
j=1

αj Tj(y) . (2)

5Recall that {x} = {x} ∩ {T (x)} = {x} ∩ {x′ : T (x′) = T (x)} induces a “cut” p(x) = p(x, T (x)) =
p(x|T (x)) p(T (x)).

6Why is T (y) always a vector of sufficient statistics?
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Thus

k∑
j=1

Qj(θ)Tj(y)− b(θ) + a(y) =
k−1∑
j=1

[Qj(θ) + αj Qk(θ)]Tj(y)− [b(θ)− α0Qk(θ)] + a(y)

=
k−1∑
j=1

Q̃j(θ)Tj(y)− b̃(θ) + a(y)

where
Q̃j(θ) , Qj(θ) + αj Qk(θ), j = 1, · · · , k − 1

and
b̃(θ) , b(θ)− α0Qk(θ) ,

showing that we can reduce pθ(y) to a (k − 1)–parameter exponential family distribu-
tion.

Similarly, if the natural parameters plus the constant function,

{1, Q1(θ), · · · , Qk(θ)} ,

are a linearly dependent set of functions of θ, then at least one of them (say Qk(θ))
can be written as an affine combination of the others

Qk(θ) = β0 +
k−1∑
j=1

βj Qj(θ)

and again we can reduce pθ(y) to a (k− 1)-parameter exponential family distribution.
(With an appropriate possible redefinition of the term a(y).)

Important Comments

If the set {1, T1(y), · · · , Tk(y)} is linearly independent, it forms a (k + 1)-dimensional
basis for the function space of log-probability functions of the regular statistical model
P = {pθ(y)| θ ∈ Θ}.7 Also note that the ability to perform a reduction in rank due to
linear dependence in {1, Q1(θ), · · · , Qk(θ)} contradicts the assumption that the natural

parameter space, Q, is “solid” (i.e., has nonempty interior,
◦
Q 6= ∅). Thus if the k

natural statistics plus constant function are independent and the natural parameter
space is solid then the dimension k + 1 cannot be further reduced and the rank, k, of
the distribution is minimal.

7See Equation (1) and note that a(y) is a parameter-independent function that can be move to the
left-hand-side of the equation and absorbed into the loglikelihood.
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The standard assumptions which are assumed to hold for a regular k-parameter ex-
ponential family distribution are as follows:

(a) The support of the density, pθ(y), is independent of θ.

(b) The parameter space, Θ ⊂ Rm, has nonempty interior,
◦
Θ 6= ∅.

(c) The k-dimensional natural statistics plus the constant function are linearly inde-
pendent.

(d) The mapping, Q(·) : Θ→ Q, from the parameter space, Θ, to the k-dimensional
natural parameter space, Q, is one-to-one.8

(e) The natural parameter space has nonempty interior,
◦
Q 6= ∅.9

(f) The natural parameters, Q(θ), and b(θ) are twice continuously differentiable with
respect to θ.10

Regular k-parameter distributions are of great utility because the natural (sufficient)
statistics are complete (and thus minimal) and can therefore be used to construct
uniformly minimum variance unbiased estimators (UMVUEs) via the Rao-Blackwell
procedure. They also have very useful and convenient convexity properties.11

If the interior of the natural parameter space is not open (does not contain a k-
dimensional rectangle) and yet the natural statistics plus the constant function are
nonetheless linearly independent, this means that the natural parameters are either
discrete points and/or constrained to live on a nonlinear hypersurface (manifold or
“hypercurve”). In the latter case, the k-parameter distribution is called a curved ex-
ponential family distribution. The natural statistic is still sufficient, but generally it is
not complete.12

8This is the requirement that Q(θ1) = Q(θ2) =⇒ θ1 = θ2, which ensures that the (nonnatural) parameter
θ is identifiable if the natural parameter Q(θ) is identifiable.

9This assumption, that Q is “solid”, together with condition (c), ensures that the (sufficient) natural
statistics are complete, and hence minimal. I.e., conditions (c) and (e) ensure that the rank, k, is minimal
and that the natural parameters are complete and identifiable.

10Note the tacit assumption that the log-partition function b(θ) exits. This means that the “raw” distri-
bution is integrable and hence can be normalized to be a proper probability distribution. Also recall that
the log-partition function only depends on θ though the natural parameter Q(θ), so we often abuse notation
and write “b(Q)”.

11Specifically, 1) the negative log-likelihood function is convex in the natural parameter vector, Q, and 2)
the “total” natural parameter space, which is defined to be the set of all natural parameter values for which
the log-partition function, b(Q), exists, is a convex set. This means that the maximum likelihood estimate of
the natural parameter vector is the only solution to the likelihood equation, greatly simplifying the problem
of computing this estimate.

12However, if the convex hull of a curved or discrete parameter space has a nonempty interior the natural
statistic is minimal, though not necessarily complete. The minimality is shown, e.g., in the textbook Statistics
and Econometric Models, Vol. 1, 2005, C. Gourieroux and A. Monfort.
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5. Note that
y − 〈y〉 = y − y + y − 〈y〉

and therefore

(y − 〈y〉) (y − 〈y〉)T = (y − y) (y − y)T + (y − y) (y − 〈y〉)T

+ (y − 〈y〉) (y − y)T + (y − 〈y〉) (y − 〈y〉)T .

Now note that

E
{

(y − y) (y − 〈y〉)T
}

= E
{

E
{

(y − y) (y − 〈y〉)T | x}
}

= E
{

(y − y) (y − 〈y〉)T
}

= 0 .

Therefore,

Cov {y} = E
{

(y − y) (y − y)T
}

+ Cov {y} ≥ Cov {y} = Cov {E {y|x}} . (3)

Note that the left–hand–side equation of can also be written as

Cov {y} = E {Cov {y|x}}+ Cov {E {y|x}} .

The left–hand–side equation of Inequality (3) can also be interpreted as a “matrix
pythagorean theorem”.13

6. This problem is essentially done in Example 5.8 of Kay (once we recognize that an
unbiased estimate is provided by twice an unbiased estimate of the mean). The only
part of the homework problem which is unsolved in Example 5.8 is proving that the
sufficient statistic

T (Ym) = max
1≤i≤m

yi

is complete. As shown in Kay, sufficiency easily follows from

pθ(Ym) =

(
1

θm
χ

{
max
1≤i≤m

yi ≤ θ

})
·
(
χ

{
min

1≤i≤m
yi ≥ 0

})
= g(T (Ym), θ) · h(Ym)

for any θ > 0, and the Neyman–Fisher Factorization Theorem.14 Completeness follows
from noting (as per the development on page 115 of Kay) that any measurable function
of T , say W (t), has an expectation given by

Eθ {W (T )} =
m

θm

θ∫
0

W (t)tm−1dt .

13This is most easily seen by taking 〈y〉 = 0. Further note that then taking the trace of both sides of the
left–hand–equation of Inequality (3) yields the “regular” pythagorean theorem.

14Here, χ {·} denotes the so–called characteristic (or indicator) function.
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Let W (t) = W+(t) − W−(t), where W+(t) ≥ 0 and W−(t) ≥ 0 are nonnegative
functions of t.15 Then Eθ {W (T )} = 0 for all θ > 0 if and only if

θ∫
0

W+(t)tm−1dt =

θ∫
0

W−(t)tm−1dt ≥ 0

for all θ > 0, which, in turn, is true if and only if,16

θ2∫
θ1

W+(t)tm−1dt =

θ2∫
θ1

W−(t)tm−1dt ≥ 0

for every θ1 and θ2 such that θ2 ≥ θ1 > 0. Because the integrands are positive and
the equality must hold for every θ2 ≥ θ1 ≥ 0, it must therefore be the case that
W+(t) = W−(t) for almost all t ≥ 0.17 Therefore W (t) = 0 for almost all t showing
that T is complete.18

7. Kay 5.13. Note that like the previous problem the density is not regular (in particular
the area of positive support again depends on the unknown parameter θ) so that we
cannot compute a Cramér–Rao lower bound. Note that we can write the sample data
pdf as

pθ(XN) =

(
eNθ χ

{
min

1≤n≤N
x[n] ≥ θ

})
·
(

e−
∑N
n=1 x[n]

)
= g(T (XN), θ) · h(XN) .

Therefore, from the Neyman–Fisher Factorization Theorem a sufficient statistic is de-
termined to be

T (XN) = min
1≤n≤N

x[n] .

15This can be done for any real function W (t).

16
θ2∫
0

W±(t)tm−1dt =
θ1∫
0

W±(t)tm−1dt+
θ2∫
θ1

W±(t)tm−1dt. and
θ1∫
0

W+(t)tm−1dt =
θ1∫
0

W−(t)tm−1dt.

17Let θ1 = t ≥ 0 and θ2 = t + ε, then in the limit of small ε > 0 the equality becomes εW+(t)tm−1 =
εW−(t)tm−1 =⇒ W+(t) = W−(t).

18A more rigorously proof goes as follows: From the last inequality involving integrals, it follows that∫
A

W+(t)tm−1dt =

∫
A

W−(t)tm−1dt ≥ 0

for every Borel measurable set A (recall that the Borel σ-algebra is the smallest σ-algebra containing the
intervals in R). In particular, if we take A = {t|W (t) > 0} (for which the right-hand integral must take the
value zero) it follows that W+ = 0 a.e. Similarly, taking A = {t|W (t) < 0} it follows that W− = 0 a.e.
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We now proceed to find the distribution function of T ,

Pθ(T ≤ t) = 1− Pθ(T > t) = 1− Pθ( min
1≤n≤N

x[n] > t)

= 1− Pθ(x[1] > t, · · · , x[N ] > t)

= 1−

 ∞∫
max{t,θ}

eθ−xdx


N

= 1− eN(θ−max{t,θ}) .

Differentiating the distribution function with respect to t we obtain the pdf,

pθ(t) =

{
NeN(θ−t) t ≥ θ

0 t < θ
.

The expected value of T can now be computed,

Eθ {T} = θ +
1

N
.

An unbiased estimator is then obviously given by

θ̂ = T − 1

N
= min

1≤n≤N
x[n]− 1

N
.

It can be shown that T is a complete sufficient statistic.19 Therefore, from the RBLS
Theorem, we have found the UMVUE of the unknown parameter θ. Note that from the
pdf of T we can compute the (uniformly optimal, parameter dependent) error variance
if we so desire.

8. Moon 10.5.8. This is a generalization of the previous problem. The general class of such
non–regular exponential families (i.e., exponential family–like, but with parameter–
dependent support) is discussed in the text by Ferguson cited in Footnote 19.

(a) For σ known, µ unknown we have

pθ(X n) =

(
en

µ
σ χ

{
min
1≤k≤n

xk ≥ µ

})
·

(
e−

1
σ

∑n
k=1 xk

σn

)
= g(T (X n), θ) · h(X n) .

From the N–F Factorization Theorem, T (X n) = min
1≤k≤n

xk is a sufficient statistic

for µ. It is also complete.

19 See, e.g., Mathematical Statistics: A Decision Theoretic Approach, T.S. Ferguson, Academic Press,
1967, Exercise #4, page 137.
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(b) For σ unknown and µ known we have

pθ(X n) =

(
en

µ
σ
− 1
σ

∑n
k=1 xk

σn

)
·
(
χ

{
min
1≤k≤n

xk ≥ µ

})
= g(T (X n), θ) · h(X n) .

Thus T (X n) =
∑n

k=1 xk is a sufficient statistic for σ.

(c) For both σ and µ unknown we have

pθ(X n) =

(
en

µ
σ
− 1
σ

∑n
k=1 xk

σn
χ

{
min
1≤k≤n

xk ≥ µ

})
· 1 = g(T (X n), θ) · h(X n) .

Therefore T (X n) = (
∑n

k=1 xk, min
1≤k≤n

xk)
T is a sufficient statistic for θ = (σ, µ)T .

9. Kay 5.15. If you have trouble with the first two parts of this problem, please come see
me at my office hour. Note that the Gaussian, Rayleigh, and Exponential distributions
are regular exponential families and that T is a complete (and hence minimal) sufficient
statistic. Note that below we can find an UMVUE for each case, but only if we choose
an appropriate parameterization. This is because of the strong constraint that the
estimator be uniformly unbiased.

(a) Gaussian. Here θ = µ, T (x) =
∑N

n=1 x[n] and Eθ {T (x)} = Nµ. Therefore the
UMVUE for µ is given by

µ̂ =
1

N
T (x) =

1

N

N∑
n=1

x[n] .

(b) Rayleigh. Here θ = σ2, T (x) =
∑N

n=1 x
2[n] and Eθ {T (x)} = 2σ2N . Therefore

σ̂2 =
1

2N
T (x) =

1

2N

N∑
n=1

x2[n]

is the UMVUE for σ2.

(c) Exponential. Here the appropriate parameterization is a little trickier. Now we
take θ = 1

λ
. We also have T (x) =

∑N
n=1 x[n] and Eθ {T (x)} = N

λ
. Thus the

UMVUE is given by

θ̂ =

(̂
1

λ

)
=

1

N
T (x) =

1

N

N∑
n=1

x[n] .

10. Under the multivariate gaussian assumption we have that

pθ(y) = c exp

{
−1

2
‖y −Aθ‖2R−1

}
where the normalizing constant c is independent of θ and the full column–rank matrix
A is m× k.
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(a) With T (y) , ATR−1y we have

‖y −Aθ‖2R−1 = ‖y‖2R−1 − 2θTT (y) + ‖Aθ‖2R−1 .

Thus, as a consequence of the NFFT, T is sufficient and pθ(y) is seen to be an
exponential family distribution. Because of the full column rank assumption on
A, the rows of AT are linearly independent which means that the components
of T are linearly independent functions of y. Because the parameter vector is
unconstrained, the parameter space has nonempty interior so that T is complete
and therefore minimal.20 Because of the assumption that A has full column rank,
it must be the case that k ≤ m. Thus the k–dimensional minimum sufficient
statistic realization value t = T (y) is no larger than the dimension m of the raw
data. If it is the case that k < m then data compression has occurred, which is
especially nice in the case when k � m.

(b) With T a complete, minimum sufficient statistic, the RBLS Theorem tells us that
the UMVUE (if it exists21) must be a function of T . Noting that

Eθ {T} = ATR−1Aθ,

with A full column–rank, it is evident that the UMVUE is given by

θ̂(y) =
(
ATR−1A

)−1
T (y) =

(
ATR−1A

)−1
ATR−1y.

11. The solution to this problem involves a very simple application of the result from the
previous section. Define Tk , T (yk) and

Σk , E
{
vkv

T
k

}
= diag(σ1, · · ·σk) = diag(Σk−1 σk) .

Then

Tk = AT
kΣ−1k yk = AT

k−1Σ
−1
k−1yk−1 +

rTk
σk
y[k] = Tk−1 + bk y[k]

where bk ,
rTk
σk

. Note that both Tk and bk are n–dimensional for all times k.

12. Kay 7.7. In particular, we will show that θ̂ML is the solution to the equation

Eθ {B(X)} = B(x)

where x = X(ω) denotes the realization vector of the N iid samples. Recall that we
have defined f ′(θ) as

f ′(θ) =
∂

∂θ
f(θ) .

20This is a fundamental property of regular, full–rank, nonempty parameter–set exponential family distri-
butions.

21Remember that the set of uniformly unbiased estimators might be empty for an unfelicitous choice of
parameterization.
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Because the samples are iid, we have that

pθ(x) = exp {A(θ)B(x) + C(x) +ND(θ)}

where

B(x) =
N∑
k=1

B(xi) (4)

is a complete sufficient statistic for θ and

C(x) =
N∑
k=1

C(xi) .

The MLE is found as a solution of the likelihood equation,

Sθ(x) = 0 , (5)

where Sθ(x) is the score function,

Sθ(x) =
∂

∂θ
ln pθ(x) = A′(θ)B(x) +ND′(θ) . (6)

I.e., the MLE is a solution to

A′(θ)B(x) +ND′(θ) = 0 . (7)

It is evident, then, that the MLE can be equivalently found as a solution to the equation

B(x) = −N D′(θ)

A′(θ)
(8)

Now because we are working with a regular exponential family, we can interchange the
order of differentiation and integration in expressions involving pθ(x). In particular,
differentiating the expression ∫

pθ(x)dx = 1

with respect to θ yields the fact that the score has zero mean uniformly in θ

Eθ {Sθ(X)} = 0 (9)

an expression derived and discussed in class last quarter. The likelihood equation (5)
and the zero-mean condition (9) are the key equations needed to solve this homework
problem.
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From (6), equation (9) is seen to be equivalent to

Eθ {A′(θ)B(X) +ND′(θ)} = 0

which can be rearranged as

Eθ {B(X)} = −N D′(θ)

A′(θ)
(10)

If we take θ itself to be the natural parameter

θ = A

then this becomes
EA {B(X)} = −N D′(A), (11)

where D is here taken to be a function of the natural parameter A and D′(A) denotes
the derivative of D with respect to A.

Finally, comparison of equations (8) and (10) shows that the MLE can be found as a
solution to the equation

Eθ {B(X)} = B(x)

as claimed.

(a) Unit variance, unknown mean Gaussian case. We have,

p(x;µ) = φ(x;µ) =
1√
2π

exp

{
−1

2
(x− µ)2

}
= exp

{
µx− 1

2
x2 − 1

2
(µ2 + ln 2π)

}
.

Thus we have,

A(µ) = µ, B(x) = x, C(x) = −x
2

2
, D(µ) = −1

2
(µ2 + ln 2π),

and therefore,

A′(µ) = 1, D′(µ) = −µ, B(x) =
N∑
n=1

B(x[n]) =
N∑
n=1

x[n] .

Substitution into equation (7) above and rearranging yields the answer,

µ̂ML =
1

N

N∑
n=1

x[n] .

(b) Exponential Distribution. Here we have,

p(x;λ) = λ exp {−λx} = exp {−λx+ lnλ} .
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Thus,
A(λ) = −λ, B(x) = x, C(x) = 0, D(λ) = lnλ,

so that

A′(λ) = −1, D′(λ) =
1

λ
, B(x) =

N∑
n=1

B(x[n]) =
N∑
n=1

x[n] .

Substituting into equation (7) above and rearranging yields

λ̂ML =

(
1

N

N∑
n=1

x[n]

)−1
.
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